SUSY Results from the Tevatron

SUSY 2011 28 Aug - 2 Sept, Fermilab

Leo Bellantoni, FNAL

The Tevatron

11~12 fb⁻¹ delivered per experiment

Both CDF & D0 detectors measure $e, \mu, \gamma,$ jets, τ well and tag b, c with vertex detectors

After so many years, these are well-understood detectors

http://www-cdf.fnal.gov/physics/exotic/exotic.html
http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

A Glance Back

VOLUME 62, NUMBER 16

PHYSICAL REVIEW LETTERS

17 APRIL 1989

Limits on the Masses of Supersymmetric Particles from 1.8-TeV $p\bar{p}$ Collisions

F. Abe, (16) D. Amidei, (3) G. Apollinari, (11) G. Ascoli, (7) M. Atac, (4) P. Auchincloss, (14) A. R. Baden, (6) A. Barbaro-Galtieri, (9) V. E. Barnes, (12) F. Bedeschi, (11) S. Behrends, (12) S. Belforte, (11) G. Bellettini, (11) J. Bellinger, (17) J. Bensinger, (2) A. Beretvas, (14) P. Berge, (4) S. Bertolucci, (5) S. Bhadra, (7) M. Binkley, (4) R. Blair, (1) C. Blocker, (2) J. Bofill, (4) A. W. Booth, (4) G. Bensinger, (17) M. Campbell, (18) R. Carey, (6) W. Cashmore, (4) F. Cervelli, (11) K. Chadara, (18) Cashmore, (18) F. Cervelli, (19) K. Chadara, (19) M. Campbell, (19) M. Campbell,

squarks and gluinos in jets + Missing $E_{\rm T}$ 25.3 nb⁻¹

 $W \rightarrow \tau \upsilon, Z \rightarrow \upsilon \upsilon$ HF production backgrounds estimated from Monte Carlo alone

L. Bellantoni (FNAL)

SUSY '11

28 Aug 2011

A Glance Back

 $\mathcal{O}[10^2]$ as much data

Background models now include diboson production, top pair production, and QCD rates from data, not MC

Analysis techniques now much more advanced:

- Combined selection criteria
- Multivariate discriminant
- Limit setting procedures

Gluino Mass (GeV)

Abazov, etal, Phys.Lett.B660,449(2008) Abazov, etal, Phys.Lett.B680,24(2009) Aaltonen etal, Phys.Rev.Lett. 102 (2009) 121801

Table of Contents

Recent results

- · stop & sneutrino in $e\mu$
- like sign dileptons
- $B_S \rightarrow \mu\mu$
- GMSB in γγ
- SUSY & Dark Photons

Looking forward

- charm tagging
- tau tagging
- · a few words about pp vs $p\bar{p}$

\tilde{t} pairs in $e \mu \not\!\!E_{\rm T}$

Backgrounds are

 $p\overline{p} \rightarrow Z/\gamma^* \rightarrow \tau^+\tau^- \rightarrow e^+\mu^- 4\nu$ occurs at relatively low \mathbb{Z}_T , $p_T(\ell^\pm)$ (< 20 GeV) and large opening angle ($\Delta \phi > 2.8$) in the transverse plane

 $p\overline{p} \rightarrow t\overline{t}$ is basically the same thing without the SUSY; it can be suppressed with MVA methods

WW likewise

Abazov et.al., Phys.Lett. B696,321(2011)

Aaltonen et al. Phys. Rev. D82, 092001 (2010)

Other stop searches:

• top-like $\ell\ell$

Aaltonen etal, Phys.Rev.Lett. 104,251801(2010) Abazov etal, Phys.Lett. B675,289 (2009)

• top-like ℓ +jet Abazov Phys.Lett.B674,4(2009)

$\tilde{\mathbf{v}}$ in $e \mu$

A search for $e\mu$ resonances Parameterized in terms of R-Parity violating sneutrino:

$$L = - (\lambda_{312}) \tilde{v}_L \Big) \Big[\overline{\mu}_R e_L + \overline{e}_R \mu_L \Big] - (\lambda_{311}) \tilde{v}_L \Big) \Big[\overline{d}_R d_L \Big] + h \, c \, .$$

20 GeV
$$< \cancel{E}_{T}$$

0.7 $< \phi(\mu, \cancel{E}_{T}) < 2.3$

Jet veto reduces $t \bar{t}$

Abazov et.al., Phys.Rev.Lett. 105:191802 (2010)

$\tilde{\mathbf{v}}$ in $e\mu$, $e\tau$ and $\mu\tau$

Like Sign Dileptons I

2 high $p_{\rm T}$ leptons of same (non-zero) charge is rare in $p\bar{p}$ collisions: $\sigma(p\bar{p}\to WZ/ZZ\to \ell^{\pm}\ell^{\pm})\sim {\rm few}\ {\rm pb}$

This makes an excellent signature for many BSM extensions: SUSY, Universal Extra Dimensions, heavy Majorana v, 4th generation fermions, H^{++}

1st step: model-independent search for isolated same-charge same-vertex e^{\pm} or u^{\pm}

$$p_{\rm T}^{(1)} > 20~{\rm GeV}~|\eta| < 1.1$$

 $p_{\rm T}^{(2)} > 10~{\rm GeV}~|\eta| < 1.1$
 $V{\rm eto}~86{\rm GeV} < {\rm m}(\ell^+\ell^-) < 96{\rm GeV}$
 $V{\rm eto}~86{\rm GeV} < {\rm m}(e^+e^-) < 96{\rm GeV}$

CONF Note 10464

Like Sign Dileptons II

2nd step: Require 1 or more jets in addition to the model-independent selection

Set limits on production cross-sections times decay branching ratios as function of $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0)$ and $m(\tilde{q}), m(\tilde{g})$

Using $Br(\tilde{q} \rightarrow q\tilde{\chi}_1^{\pm}) = Br(\tilde{q} \rightarrow q\tilde{\chi}_2^0) = 1/2$ and parameterization of Alwall, Schuster & Toro, Phys.Rev. D79,075020(2009)

6.1 fb⁻¹

CDF Note 10465

Like Sign Dileptons III

Minimal Supersymmetry has 5 Higgs bosons; lightest is CP-even scalar h

With radiative corrections $m_h \leq 135 \text{GeV}$ for all

 $tan \beta$ (lower for $tan \beta \approx 1$)

Existing limit is close to this bound!

In mSUGRA, the SM Higgs bound

 $m_{\rm h} \leq 114 {\rm GeV}$ applies

Favors high $tan \beta$ - which means, processes that decay to τ are of particular interest

3rd step: look for τe , $\tau \mu$ events in same-sign sample

Like Sign Dileptons III

Limits on SUSY o, CDF Run II Preliminary, 6.0 fb1 300 **Expected Limit** 280 **Observed Limit** 260 (240 220 200 (3) 180 0.3 pb $M(\widetilde{I}) > M(\widetilde{\chi}^{\pm})$ 160 Simplified Gauge Model 140 BR $(\widetilde{\chi}^{\pm} \rightarrow \widetilde{\tau} + X) = 100\%$ 120 100 120 140 160 180 200 220 M(i) (GeV/c²)

Look for a hadronically decaying τ with μ or e of the same charge

"Simplified gravity" model 1:

$$Br(\tilde{\chi}_{2}^{0} \to \tilde{\tau}^{\pm} \tau^{\mp}) = Br(\tilde{\chi}_{1}^{\pm} \to \tilde{\tau}^{\pm} \nu) = 1$$

$$Br(\tilde{\ell}^{\pm} \to \ell \tilde{\chi}_{1}^{0}) = 1$$

$$m(\tilde{\chi}_{2}^{0}) = m(\tilde{\chi}_{1}^{\pm})$$

"Simplified gravity" model 2: Similar, but

$$Br(\tilde{\chi}_{2}^{0} \to \tilde{\tau}^{\pm} \tau^{\mp}) = Br(\tilde{\chi}_{1}^{\pm} \to \tilde{\tau}^{\pm} \nu) = 1/3$$

$$Br(\tilde{\ell}^{\pm} \to \ell \tilde{\chi}_{1}^{0}) = 1, flavor \ conserving$$

"Simplified gauge" model:

$$Br(\tilde{\chi}_{2}^{0} \to \tilde{\tau}^{\pm} \ell^{\mp}) = 1/3$$

$$Br(\tilde{\chi}_{1}^{\pm} \to \tilde{\tau}^{\pm} \nu) = 1 \qquad m(\tilde{\chi}_{1}^{0}) \approx 0$$

$$Br(\tilde{\ell}^{\pm} \to \ell \tilde{\chi}_{1}^{0}) = 1, flavor conserving$$

CDF Note 10611

$B_{\rm S} \rightarrow \mu\mu$

Normalize to $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$

Br(B_s
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.2±0.2) x10⁻⁹
Br(B_d $\rightarrow \mu^{+}\mu^{-}$) = (1.0±0.1) x10⁻¹⁰
A. J. Buras et al., JHEP 1010:009,2010

In MSSM Br(B_s
$$\rightarrow \mu^+\mu^-$$
) $\propto \tan^6(\beta)$

Continuum backgrounds are:

- $b \rightarrow c \mu^{-} X$; $c \rightarrow (s,d) \mu^{+} X$
- $Z/\gamma^* \rightarrow \mu^+ \mu^-$ and (wrong) large impact parameter
- $p\overline{p} \to b\overline{b} \to \mu^+ \mu^- X$
- Fake muons

Fit M(μμ) to a line outside signal region

Non-continuum background:

 $B_{\rm S} \rightarrow 2$ hadrons which are mis-identified as muons

Estimated in D*+ tagged $D^0 \rightarrow K^-\pi^+$ data

For 0.995 < NNet < 1 (most pure sample)

 0.92 ± 0.21 events in B_d window 0.11 ± 0.11 events in B_s window

$B_{\rm S} \rightarrow \mu\mu$

Likelihood fit includes all bins in $M(\mu\mu)$, NN

Systematic uncertainties included as nuisance parameters, modeled as Gaussian

Including S.M. contribution as background, p-value is 1.9% for B_S box, >23% for B_d box.

$$Br(B_d \to \mu^+ \mu^-) < 5.0 \times 10^{-9} \quad 90\% \ CL.$$
$$4.6 \times 10^{-9} < Br(B_s \to \mu^+ \mu^-) < 39 \times 10^{-9}$$

Central value for *S* corresponds to 5.6 times SM rate

7 fb⁻¹

arXiv:1107.2304

But later CMS result on 1.14fb⁻¹ (arXiv:1107.5834) was Br($B_S \rightarrow \mu^+\mu^-$) < 19 x10⁻⁹

GMSB in γγ €_T

In Gauge Mediated Supersymmetry Breaking, gravitino is LSP Gravitino is dark matter candidate if $\mathbf{m}_{\mathbf{G}}$ < few keV

 $p\bar{p}$ collisions produce SUSY particles

cascade down to NLSP & then to gravitino Phenomenology determined by NLSP

One clean signature is when last decay in the chain is $\tilde{\chi}^0 \tilde{\chi}^0 \rightarrow \gamma \tilde{G} \gamma \tilde{G}$

UED limits also found Abazov et.al. PRL 105, 221802 (2010) Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.104, 011801 (2010).

SUSY & Dark Photons

PAMELA, ATIC, Fermi LAT, INTEGRAL, HEAT, AMS-01, WMAP ('haze') all have results that \underline{could} be interpreted as dark matter annihilation to e^+e^- near the center of the Milky Way

```
Arkani-Hamed & Weiner JHEP 0812:104 (2008)
Arkani-Hamed, Finkbeiner, Slatyer & Weiner
Phys.Rev.D 79,015014 (2009)
```

⇒ try to fit them all into 1 model (along with DAMA results)

- \cdot Dark matter is on 0.5 $0.8~{
 m TeV}$ mass scale and annihilates to SM particles with sizeable cross sections
- ·Perhaps some new symmetry prevents the decay of these states
- These massive states might couple to $\mathcal{O}[1\mathrm{GeV}]$ "dark photons" which is part of a new sector of matter (a Hidden-Valley model)
- ·This picture of dark matter can be implemented with GMSB SUSY

SUSY & Dark Photons

Look for 2 e^+e^- , $\mu^+\mu^-$ pairs with small opening angles - need to develop new isolation cuts

Don't require $\ell^+\ell^-$ pairs to come from primary $p\bar{p}$ vertex to allow up to $\mathcal{O}[1cm]$ decay length

$$E_{\rm T} > 30~{\rm GeV}$$

Abazov etal. Phys.Rev.Lett. 105,211802 (2010)

Looking Forward: charm tagging

Charm is hard to find with just vertex detectors

Sum of network outputs Charm **Bottom** Light+Taus

2 output, 22 input **Neural Net**

1.4

1.6

1.8

1.2

Typically $\tau(b \text{ hadrons}) > \tau(c \text{ hadrons})$ ⇒ no high-purity selection

CDF CONF Note 9834

Fraction of objects [%]

12

0.8

Looking Forward: tau tagging

τ is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{life} \Rightarrow large \ d_0$)

After adding these variables in the NN clear improvement

was observed:

 $\sim 10\%$ more signal for the same bkg

3 prong τ_{had}

Romain Madar (CEA/Irfu/SPP)

Tau Lepton Workshop - 09/16/2010

Looking Forward: pp vs $p\bar{p}$

This Just In

New result in SUSY search in trileptons from CDF:

Marcel Vogel presentation 235 in Room F (Wilson Hall 3NE)

Monday 29 Aug 11:35 AM

CDF Note 10636

SUSY '11

28 Aug 2011

Many thanks: Oscar Gonzalez, Mike Eads, Michel Jaffre, Rob Forrest, & Our Conference Organizers

Another Slide

sparticle masses ≠ SM particle masses

Few constraints on Lagrangian terms that could create this asymmetry \Rightarrow 105 " L_{SOFT} " terms

Different SUSY-breaking models simplify these 105 terms with various parameterizations

mSUGRA		
m _o	Common scalar mass	
m _{1/2}	Common gaugino mass	
tan β	Ratio of Higgs vev	
A_0	Common trilinear term	
μ	Higgsino parameter	

T .		C		• -	• •	1 • , •
Just	2	Oİ	many	poss1	b 1.	lities

GMSB		
Λ	SUSY breaking scale	
M _m	Messenger mass scale	
tan β	Ratio of Higgs vev	
N _m	# of messenger fields	
μ	Higgsino parameter	
C _{grav}	Sets the NLSP lifetime	